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Download the slides from 
https://rahulbhadani.github.io/reu.html
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Agenda

- URDF - The Universal Robot Description Format
- Joints and Links
- Writing a XACRO file
- Model in Gazebo
- World in Gazebo
- Understanding physics in Gazebo
- Plugin to manipulate Robot state in Gazebo
- Sensor simulation
- Integrating ROS with Gazebo
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URDF-Universal Robot Description Format

❖ Although not an universal format, it is adopted by ROS to specify 
robot structures.

❖ An old format that doesn’t address very well evolving needs of 
Robots

❖ Specifies only Kinematic and Dynamic Properties
❖ Cannot specify pose of the model related to the world.
❖ But this is what we have got for now.
❖ Later, we will see that sdf file format tries to fill some gaps.
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URDF: First Example

- Create a file and enter the following content:
<?xml version="1.0"?>

<robot name="myfirst">

  <link name="base_link">

    <visual>

      <geometry>

        <cylinder length="0.6" radius="0.2"/>

      </geometry>

    </visual>

  </link>

</robot>

-  Save it as first.urdf and close it.
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- Run the following command in the terminal
$ roslaunch urdf_tutorial display.launch model:=first.urdf
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URDF: First Example

- Adding more stuff:
- So far we had a primitive shape (called as link): a cylinder. How do 

we we create a complicated body?
- Consider a complicated body as a combination of many primitive 

shapes.
- How are they connected?
-
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URDF: First Example
- Add another primitive shape (i.e. link).
- Two links are connected by joints.
- Added following content in a new file: 

second.urdf
<?xml version="1.0"?>

<robot name="multipleshapes">

  <link name="base_link">

    <visual>

      <geometry>

        <cylinder length="0.6" radius="0.2"/>

      </geometry>

    </visual>

  </link>

7

  <link name="right_leg">

    <visual>

      <geometry>

        <box size="0.6 0.1 0.2"/>

      </geometry>

    </visual>

  </link>

  <joint name="base_to_right_leg" type="fixed">

    <parent link="base_link"/>

    <child link="right_leg"/>

  </joint>

</robot>

Run as roslaunch urdf_tutorial 

display.launch model:=second.urdf
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URDF: First Example

- Notice that in the last example, we didn’t specify, how will two 
links be connected: from center to center, from edge to center 
of from edge to edge? 

- By default if we do not specify that, then joints connect two 
links by their centers (of mass). 

- In order to connect two links differently, we can define origins 
explicitly.
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URDF: First Example
- Create a new file: third.urdf

<?xml version="1.0"?>

<robot name="origins">

  <link name="base_link">

    <visual>

      <geometry>

        <cylinder length="0.6" 
radius="0.2"/>

      </geometry>

    </visual>

  </link>
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 <link name="right_leg">

    <visual>

      <geometry>

        <box size="0.6 0.1 0.2"/>

      </geometry>

      <origin rpy="0 1.57075 0" xyz="0 0 
-0.3"/>

    </visual>

  </link>

  <joint name="base_to_right_leg" 
type="fixed">

    <parent link="base_link"/>

    <child link="right_leg"/>

    <origin xyz="0 -0.22 0.25"/>

  </joint>

</robot>
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URDF: First Example

- Examine the joint’s origin <origin xyz="0 -0.22 0.25"/>. 
- It is defined in terms of the parent’s reference frame. 
- We are -0.22 meters in the y direction (to our left, but to the right 

relative to the axes) and 0.25 meters in the z direction (up).
- This means that the origin for the child link will be up and to the right, 

regardless of the child link’s visual origin tag. 
- Since we didn’t specify a rpy (roll pitch yaw) attribute, the child frame 

will be default, i.e., have the same orientation as the parent frame.
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URDF: First Example
- Now, looking at the leg’s visual origin, <origin rpy="0 1.57075 0" xyz="0 0 

-0.3"/>

- It has both a xyz and rpy offset. This defines where the center of the 
visual element should be, relative to its origin. 

- We want the leg to attach at the top, we offset the origin down by setting 
the z offset to be -0.3 meters. 

- Since we want the long part of the leg to be parallel to the z axis, we 
rotate the visual part PI/2 around the Y axis.
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URDF: First Example

- We can add few other attributes like colors, material type, 
texture etc. 
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URDF: First Example
<?xml version="1.0"?>

<robot name="materials">

  <material name="blue">

    <color rgba="0 0 0.8 1"/>

  </material>

  <material name="white">

    <color rgba="1 1 1 1"/>

  </material>

  <link name="base_link">

    <visual>

      <geometry>

        <cylinder length="0.6" radius="0.2"/>

      </geometry>

      <material name="blue"/>

    </visual>

  </link>
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  <link name="right_leg">

    <visual>

      <geometry>

        <box size="0.6 0.1 0.2"/>

      </geometry>

      <origin rpy="0 1.57075 0" xyz="0 0 -0.3"/>

      <material name="white"/>

    </visual>

  </link>

<joint name="base_to_right_leg" type="fixed">

    <parent link="base_link"/>

    <child link="right_leg"/>

    <origin xyz="0 -0.22 0.25"/>

  </joint>

 

 <link name="left_leg">

    <visual>

      <geometry>

        <box size="0.6 0.1 0.2"/>

      </geometry>

      <origin rpy="0 1.57075 0" xyz="0 0 

-0.3"/>

      <material name="white"/>

    </visual>

  </link>

  <joint name="base_to_left_leg" type="fixed">

    <parent link="base_link"/>

    <child link="left_leg"/>

    <origin xyz="0 0.22 0.25"/>

  </joint>

</robot>
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URDF: First Example

- A Full Example can be obtained from: 
https://github.com/ros/urdf_tutorial/blob/master/urdf/05-vi
sual.urdf

-
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URDF: Specifying joint types

- Use the example from 
https://github.com/ros/urdf_tutorial/blob/master/urdf/06-fl
exible.urdf

- Joints are used to move different links
- Types of joints:

- revolute - a hinge joint that rotates along the axis and has a limited range specified by the upper and lower limits.
- continuous - a continuous hinge joint that rotates around the axis and has no upper and lower limits.
- prismatic - a sliding joint that slides along the axis, and has a limited range specified by the upper and lower limits.
- fixed - This is not really a joint because it cannot move. All degrees of freedom are locked. This type of joint does not 

require the axis, calibration, dynamics, limits or safety_controller.
- floating - This joint allows motion for all 6 degrees of freedom.
- planar - This joint allows motion in a plane perpendicular to the axis.
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URDF: Specifying joint types

- We will examine few components of the code.
 <joint name="head_swivel" type="continuous">

    <parent link="base_link"/>

    <child link="head"/>

    <axis xyz="0 0 1"/>

    <origin xyz="0 0 0.3"/>

  </joint>

- We see that connection between body and head is continuous, 
so head can freely rotate.
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URDF: Specifying joint types
<joint name="left_gripper_joint" type="revolute">

    <axis xyz="0 0 1"/>

    <limit effort="1000.0" lower="0.0" upper="0.548" velocity="0.5"/>

    <origin rpy="0 0 0" xyz="0.2 0.01 0"/>

    <parent link="gripper_pole"/>

    <child link="left_gripper"/>

  </joint>

- Arms rotate using revolute. Revolute joints are same as 
continuous but with some restriction on degree of movement.

-
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URDF: Specifying joint types
<joint name="gripper_extension" type="prismatic">

    <parent link="base_link"/>

    <child link="gripper_pole"/>

    <limit effort="1000.0" lower="-0.38" upper="0" velocity="0.5"/>

    <origin rpy="0 0 0" xyz="0.19 0 0.2"/>

  </joint>

- Gripper Extension uses prismatic joints. It moves along an 
axis, not around it. This translational movement is what allows 
our robot model to extend and retract its gripper arm.
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URDF: Adding physical properties

- Until now, we specified structure of the robot. We will not add 
some physical attributes

- Use the file from 
https://raw.githubusercontent.com/ros/urdf_tutorial/master
/urdf/07-physics.urdf

-
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URDF: Adding physical properties
<link name="base_link">

    <visual>

      <geometry>

        <cylinder length="0.6" radius="0.2"/>

      </geometry>

      <material name="blue">

        <color rgba="0 0 .8 1"/>

      </material>

    </visual>

    <collision>

      <geometry>

        <cylinder length="0.6" radius="0.2"/>

      </geometry>

    </collision>

  </link>
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- The collision element defines its shape the same 
way the visual element does, with a geometry tag. 
The format for the geometry tag is exactly the 
same here as with the visual.

- Collision defines what shape will be used for 
physics calculation as in force computations when 
two bodies (or links) touch or collide with each 
other.

- Usually, visual geometry can be a complicated 
mesh developed in solidworks or similar software, 
but collision is kept simple as a mesh collision 
makes computation slow and time-expensive.
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URDF: Adding physical properties
- We also need to specify physical 

properties such inertia, mass, friction, 
etc that physics engines (e.g. Gazebo) 
would need.

- Meshlab software can be used to 
calculate inertia of a complicated 
geometry.

- Wrong inertia will make everything 
going haywire in Gazebo.

 <link name="base_link">
    <visual>
      <geometry>
        <cylinder length="0.6" radius="0.2"/>
      </geometry>
      <material name="blue">
        <color rgba="0 0 .8 1"/>
      </material>
    </visual>
    <collision>
      <geometry>
        <cylinder length="0.6" radius="0.2"/>
      </geometry>
    </collision>
    <inertial>
      <mass value="10"/>
      <inertia ixx="0.4" ixy="0.0" ixz="0.0" 
iyy="0.4" iyz="0.0" izz="0.2"/>
    </inertial>
  </link>

21



Rahul BhadaniECE 492 - The University of Arizona

URDF: Using XACRO in URDF
- XACRO is a macro language, used with URDF to define variables and do computations 

within URDF to avoid doing math by hand.

- Open your catvehicle.xacro file from catvehicle package and examine the content of 
the file

-
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Using URDF in Gazebo

- As we discussed earlier, urdf comes with its own shortcomings.
- To fill the gaps for evolving needs of robots,  a new format called the 

Simulation Description Format (SDF) was created for use in Gazebo
- Run the command: roslaunch urdf_sim_tutorial gazebo.launch
- You will see a robot in the Gazebo world
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Using URDF in Gazebo

- Now we examine what is it in the gazebo.launch
- To find the gazebo.launch  file, type roscd urdf_sim_tutorial in your 

terminal.
- roscd command changes directory that has package 

urdf_sim_tutorial
- cd launch
- gedit gazebo.launch
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Using URDF in Gazebo

- Now, run roslaunch urdf_sim_tutorial 13-diffdrive.launch
- Play around. See robot moving.
- Examine some files:

- roscd urdf_sim_tutorial
- cd launch
- gedit 13-diffdrive.launch
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USING MATLAB to examine urdf

• In MATLAB type:
• robot = importrobot('sixth.urdf');
• show(robot);

• You can also use Simscape in MATLAB to analyze and perform 
simulations on urdf file.

• smimport('sixth.urdf');
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Exercise

• Follow the tutorial on
• http://gazebosim.org/tutorials/?tut=ros_urdf
• http://gazebosim.org/tutorials?tut=ros_gzplugins
• http://gazebosim.org/tutorials/?tut=ros_control
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