
Rahul BhadaniECE 492 - The University of Arizona rahulbhadani.github.io

CAT VEHICLE REU 2019

Rahul Bhadani <rahulbhadani@email.arizona.edu>

1

Robot Design using ROS and Gazebo

mailto:rahulbhadani@email.arizona.edu

Rahul BhadaniECE 492 - The University of Arizona

Download the slides from
https://rahulbhadani.github.io/reu.html

2

https://rahulbhadani.github.io/reu.html

Rahul BhadaniECE 492 - The University of Arizona

Agenda

- URDF - The Universal Robot Description Format
- Joints and Links
- Writing a XACRO file
- Model in Gazebo
- World in Gazebo
- Understanding physics in Gazebo
- Plugin to manipulate Robot state in Gazebo
- Sensor simulation
- Integrating ROS with Gazebo

3

Rahul BhadaniECE 492 - The University of Arizona

URDF-Universal Robot Description Format

❖ Although not an universal format, it is adopted by ROS to specify
robot structures.

❖ An old format that doesn’t address very well evolving needs of
Robots

❖ Specifies only Kinematic and Dynamic Properties
❖ Cannot specify pose of the model related to the world.
❖ But this is what we have got for now.
❖ Later, we will see that sdf file format tries to fill some gaps.

4

Rahul BhadaniECE 492 - The University of Arizona

URDF: First Example

- Create a file and enter the following content:
<?xml version="1.0"?>

<robot name="myfirst">

 <link name="base_link">

 <visual>

 <geometry>

 <cylinder length="0.6" radius="0.2"/>

 </geometry>

 </visual>

 </link>

</robot>

- Save it as first.urdf and close it.

5

- Run the following command in the terminal
$ roslaunch urdf_tutorial display.launch model:=first.urdf

Rahul BhadaniECE 492 - The University of Arizona

URDF: First Example

- Adding more stuff:
- So far we had a primitive shape (called as link): a cylinder. How do

we we create a complicated body?
- Consider a complicated body as a combination of many primitive

shapes.
- How are they connected?
-

6

Rahul BhadaniECE 492 - The University of Arizona

URDF: First Example
- Add another primitive shape (i.e. link).
- Two links are connected by joints.
- Added following content in a new file:

second.urdf
<?xml version="1.0"?>

<robot name="multipleshapes">

 <link name="base_link">

 <visual>

 <geometry>

 <cylinder length="0.6" radius="0.2"/>

 </geometry>

 </visual>

 </link>

7

 <link name="right_leg">

 <visual>

 <geometry>

 <box size="0.6 0.1 0.2"/>

 </geometry>

 </visual>

 </link>

 <joint name="base_to_right_leg" type="fixed">

 <parent link="base_link"/>

 <child link="right_leg"/>

 </joint>

</robot>

Run as roslaunch urdf_tutorial

display.launch model:=second.urdf

Rahul BhadaniECE 492 - The University of Arizona

URDF: First Example

- Notice that in the last example, we didn’t specify, how will two
links be connected: from center to center, from edge to center
of from edge to edge?

- By default if we do not specify that, then joints connect two
links by their centers (of mass).

- In order to connect two links differently, we can define origins
explicitly.

8

Rahul BhadaniECE 492 - The University of Arizona

URDF: First Example
- Create a new file: third.urdf

<?xml version="1.0"?>

<robot name="origins">

 <link name="base_link">

 <visual>

 <geometry>

 <cylinder length="0.6"
radius="0.2"/>

 </geometry>

 </visual>

 </link>

9

 <link name="right_leg">

 <visual>

 <geometry>

 <box size="0.6 0.1 0.2"/>

 </geometry>

 <origin rpy="0 1.57075 0" xyz="0 0
-0.3"/>

 </visual>

 </link>

 <joint name="base_to_right_leg"
type="fixed">

 <parent link="base_link"/>

 <child link="right_leg"/>

 <origin xyz="0 -0.22 0.25"/>

 </joint>

</robot>

Rahul BhadaniECE 492 - The University of Arizona

URDF: First Example

- Examine the joint’s origin <origin xyz="0 -0.22 0.25"/>.
- It is defined in terms of the parent’s reference frame.
- We are -0.22 meters in the y direction (to our left, but to the right

relative to the axes) and 0.25 meters in the z direction (up).
- This means that the origin for the child link will be up and to the right,

regardless of the child link’s visual origin tag.
- Since we didn’t specify a rpy (roll pitch yaw) attribute, the child frame

will be default, i.e., have the same orientation as the parent frame.

10

Rahul BhadaniECE 492 - The University of Arizona

URDF: First Example
- Now, looking at the leg’s visual origin, <origin rpy="0 1.57075 0" xyz="0 0

-0.3"/>

- It has both a xyz and rpy offset. This defines where the center of the
visual element should be, relative to its origin.

- We want the leg to attach at the top, we offset the origin down by setting
the z offset to be -0.3 meters.

- Since we want the long part of the leg to be parallel to the z axis, we
rotate the visual part PI/2 around the Y axis.

11

Rahul BhadaniECE 492 - The University of Arizona

URDF: First Example

- We can add few other attributes like colors, material type,
texture etc.

12

Rahul BhadaniECE 492 - The University of Arizona

URDF: First Example
<?xml version="1.0"?>

<robot name="materials">

 <material name="blue">

 <color rgba="0 0 0.8 1"/>

 </material>

 <material name="white">

 <color rgba="1 1 1 1"/>

 </material>

 <link name="base_link">

 <visual>

 <geometry>

 <cylinder length="0.6" radius="0.2"/>

 </geometry>

 <material name="blue"/>

 </visual>

 </link>

13

 <link name="right_leg">

 <visual>

 <geometry>

 <box size="0.6 0.1 0.2"/>

 </geometry>

 <origin rpy="0 1.57075 0" xyz="0 0 -0.3"/>

 <material name="white"/>

 </visual>

 </link>

<joint name="base_to_right_leg" type="fixed">

 <parent link="base_link"/>

 <child link="right_leg"/>

 <origin xyz="0 -0.22 0.25"/>

 </joint>

 <link name="left_leg">

 <visual>

 <geometry>

 <box size="0.6 0.1 0.2"/>

 </geometry>

 <origin rpy="0 1.57075 0" xyz="0 0

-0.3"/>

 <material name="white"/>

 </visual>

 </link>

 <joint name="base_to_left_leg" type="fixed">

 <parent link="base_link"/>

 <child link="left_leg"/>

 <origin xyz="0 0.22 0.25"/>

 </joint>

</robot>

Rahul BhadaniECE 492 - The University of Arizona

URDF: First Example

- A Full Example can be obtained from:
https://github.com/ros/urdf_tutorial/blob/master/urdf/05-vi
sual.urdf

-

14

https://github.com/ros/urdf_tutorial/blob/master/urdf/05-visual.urdf
https://github.com/ros/urdf_tutorial/blob/master/urdf/05-visual.urdf

Rahul BhadaniECE 492 - The University of Arizona

URDF: Specifying joint types

- Use the example from
https://github.com/ros/urdf_tutorial/blob/master/urdf/06-fl
exible.urdf

- Joints are used to move different links
- Types of joints:

- revolute - a hinge joint that rotates along the axis and has a limited range specified by the upper and lower limits.
- continuous - a continuous hinge joint that rotates around the axis and has no upper and lower limits.
- prismatic - a sliding joint that slides along the axis, and has a limited range specified by the upper and lower limits.
- fixed - This is not really a joint because it cannot move. All degrees of freedom are locked. This type of joint does not

require the axis, calibration, dynamics, limits or safety_controller.
- floating - This joint allows motion for all 6 degrees of freedom.
- planar - This joint allows motion in a plane perpendicular to the axis.

15

https://github.com/ros/urdf_tutorial/blob/master/urdf/06-flexible.urdf
https://github.com/ros/urdf_tutorial/blob/master/urdf/06-flexible.urdf

Rahul BhadaniECE 492 - The University of Arizona

URDF: Specifying joint types

- We will examine few components of the code.
 <joint name="head_swivel" type="continuous">

 <parent link="base_link"/>

 <child link="head"/>

 <axis xyz="0 0 1"/>

 <origin xyz="0 0 0.3"/>

 </joint>

- We see that connection between body and head is continuous,
so head can freely rotate.

16

Rahul BhadaniECE 492 - The University of Arizona

URDF: Specifying joint types
<joint name="left_gripper_joint" type="revolute">

 <axis xyz="0 0 1"/>

 <limit effort="1000.0" lower="0.0" upper="0.548" velocity="0.5"/>

 <origin rpy="0 0 0" xyz="0.2 0.01 0"/>

 <parent link="gripper_pole"/>

 <child link="left_gripper"/>

 </joint>

- Arms rotate using revolute. Revolute joints are same as
continuous but with some restriction on degree of movement.

-

17

Rahul BhadaniECE 492 - The University of Arizona

URDF: Specifying joint types
<joint name="gripper_extension" type="prismatic">

 <parent link="base_link"/>

 <child link="gripper_pole"/>

 <limit effort="1000.0" lower="-0.38" upper="0" velocity="0.5"/>

 <origin rpy="0 0 0" xyz="0.19 0 0.2"/>

 </joint>

- Gripper Extension uses prismatic joints. It moves along an
axis, not around it. This translational movement is what allows
our robot model to extend and retract its gripper arm.

18

Rahul BhadaniECE 492 - The University of Arizona

URDF: Adding physical properties

- Until now, we specified structure of the robot. We will not add
some physical attributes

- Use the file from
https://raw.githubusercontent.com/ros/urdf_tutorial/master
/urdf/07-physics.urdf

-

19

https://raw.githubusercontent.com/ros/urdf_tutorial/master/urdf/07-physics.urdf
https://raw.githubusercontent.com/ros/urdf_tutorial/master/urdf/07-physics.urdf

Rahul BhadaniECE 492 - The University of Arizona

URDF: Adding physical properties
<link name="base_link">

 <visual>

 <geometry>

 <cylinder length="0.6" radius="0.2"/>

 </geometry>

 <material name="blue">

 <color rgba="0 0 .8 1"/>

 </material>

 </visual>

 <collision>

 <geometry>

 <cylinder length="0.6" radius="0.2"/>

 </geometry>

 </collision>

 </link>

20

- The collision element defines its shape the same
way the visual element does, with a geometry tag.
The format for the geometry tag is exactly the
same here as with the visual.

- Collision defines what shape will be used for
physics calculation as in force computations when
two bodies (or links) touch or collide with each
other.

- Usually, visual geometry can be a complicated
mesh developed in solidworks or similar software,
but collision is kept simple as a mesh collision
makes computation slow and time-expensive.

Rahul BhadaniECE 492 - The University of Arizona

URDF: Adding physical properties
- We also need to specify physical

properties such inertia, mass, friction,
etc that physics engines (e.g. Gazebo)
would need.

- Meshlab software can be used to
calculate inertia of a complicated
geometry.

- Wrong inertia will make everything
going haywire in Gazebo.

 <link name="base_link">
 <visual>
 <geometry>
 <cylinder length="0.6" radius="0.2"/>
 </geometry>
 <material name="blue">
 <color rgba="0 0 .8 1"/>
 </material>
 </visual>
 <collision>
 <geometry>
 <cylinder length="0.6" radius="0.2"/>
 </geometry>
 </collision>
 <inertial>
 <mass value="10"/>
 <inertia ixx="0.4" ixy="0.0" ixz="0.0"
iyy="0.4" iyz="0.0" izz="0.2"/>
 </inertial>
 </link>

21

Rahul BhadaniECE 492 - The University of Arizona

URDF: Using XACRO in URDF
- XACRO is a macro language, used with URDF to define variables and do computations

within URDF to avoid doing math by hand.

- Open your catvehicle.xacro file from catvehicle package and examine the content of
the file

-

22

Rahul BhadaniECE 492 - The University of Arizona

Using URDF in Gazebo

- As we discussed earlier, urdf comes with its own shortcomings.
- To fill the gaps for evolving needs of robots, a new format called the

Simulation Description Format (SDF) was created for use in Gazebo
- Run the command: roslaunch urdf_sim_tutorial gazebo.launch
- You will see a robot in the Gazebo world

23

Rahul BhadaniECE 492 - The University of Arizona

Using URDF in Gazebo

- Now we examine what is it in the gazebo.launch
- To find the gazebo.launch file, type roscd urdf_sim_tutorial in your

terminal.
- roscd command changes directory that has package

urdf_sim_tutorial
- cd launch
- gedit gazebo.launch

24

Rahul BhadaniECE 492 - The University of Arizona

Using URDF in Gazebo

- Now, run roslaunch urdf_sim_tutorial 13-diffdrive.launch
- Play around. See robot moving.
- Examine some files:

- roscd urdf_sim_tutorial
- cd launch
- gedit 13-diffdrive.launch

25

Rahul BhadaniECE 492 - The University of Arizona

USING MATLAB to examine urdf

• In MATLAB type:
• robot = importrobot('sixth.urdf');
• show(robot);

• You can also use Simscape in MATLAB to analyze and perform
simulations on urdf file.

• smimport('sixth.urdf');

26

Rahul BhadaniECE 492 - The University of Arizona

Exercise

• Follow the tutorial on
• http://gazebosim.org/tutorials/?tut=ros_urdf
• http://gazebosim.org/tutorials?tut=ros_gzplugins
• http://gazebosim.org/tutorials/?tut=ros_control

27

http://gazebosim.org/tutorials/?tut=ros_urdf
http://gazebosim.org/tutorials?tut=ros_gzplugins
http://gazebosim.org/tutorials/?tut=ros_control

